

WATER QUALITY REPORT 2023

Annual Drinking Water Quality Report

South Salt Lake City Water 2023

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of the water and services we deliver to you every day. Our goal is to provide you with a safe and dependable supply of drinking water. This requires continuous efforts by the city to improve the water treatment process and protect our water resources.

The Public Works Department at the City of South Salt Lake works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life, and our children's future. We are committed to ensuring the quality of your water. Our water sources have been determined to be from groundwater and surface water sources. Our water source is Davis Replacement Well. We also purchase water from Salt Lake City Water System (#18026) and Jordan Valley Water Conservancy District (#18027).

Source Protection

The Drinking Water Source Protection Plan for SSL is available for your review. It contains information about source protection zones, potential contamination sources, and management strategies to protect our drinking water. Our sources have been determined to have a low level of susceptibility from potential contamination. We have also developed management strategies to further protect our sources from contamination.

Cross Connection Control

There are many connections to our water distribution system. When connections are properly installed and maintained, the concerns are very minimal. However, unapproved and improper piping changes or connections can adversely affect not only the availability, but also the quality of the water. A cross connection may let polluted water or even chemicals mingle into the water supply system when not properly protected. This not only compromises the water quality but can also affect your health. So, what can you do? Do not make or allow improper connections at your homes. Even that unprotected garden hose lying in the puddle next to the driveway is a cross connection. The unprotected lawn sprinkler system after you have fertilized or sprayed is also a cross connection. When the cross connection is allowed to exist at your home it will affect you and your family first.

Potential Contamination

All sources of drinking water are subject to potential contamination by constituents that are naturally occurring or manmade. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline.

MCLs

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. South Salt Lake City Water System is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure are available from the safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Definitions

In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

- **Non-Detects (ND)** - laboratory analysis indicates that the constituent is not present.
- **ND/Low - High** - For water systems that have multiple sources of water, the Utah Division of Drinking Water has given water systems the option of listing the test results of the constituents in one table, instead of multiple tables. To accomplish this, the lowest and highest values detected in the multiple sources are recorded in the same space in the report table.
- **Parts per million (ppm) or Milligrams per liter (mg/l)** - one part per million corresponds to one minute in two years or a single penny in \$10,000.
- **Parts per billion (ppb) or Micrograms per liter (ug/l)** - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- **Parts per trillion (ppt) or Nanograms per liter (nanograms/l)** - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.
- **Parts per billion (ppb) or Micrograms per liter (ug/l)** - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- **Parts per trillion (ppt) or Nanograms per liter (nanograms/l)** - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.
- **Parts per quadrillion (ppq) or Picograms per liter (picograms/l)** - one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000.
- **Picocuries per liter (pCi/L)** - picocuries per liter is a measure of the radioactivity in water.
- **Millirems per year (mrem/yr)** - measure of radiation absorbed by the body.
- **Million Fibers per Liter (MFL)** - million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.
- **Nephelometric Turbidity Unit (NTU)** - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- **Action Level (AL)** - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- **Treatment Technique (TT)** - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.
- **Maximum Contaminant Level (MCL)** - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **Maximum Contaminant Level Goal (MCLG)** - The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **Maximum Residual Disinfectant Level (MRDL)** - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- **Maximum Residual Disinfectant Level Goal (MRDLG)** - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **Date** - Because of required sampling time frames i.e. yearly, 3 years, 4 years and 6 years, sampling dates may seem outdated.
- **Waivers (W)**- Because some chemicals are not used or stored in areas around drinking water sources, some water systems have been given waivers that exempt them from having to take certain chemical samples, these waivers are also tied to Drinking Water Source Protection Plans.

Test Results

South Salt Lake routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period of January 1, 2023 to December 31, 2023. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

Contaminant	Violation Y / N	Level Detected ND/Low-High	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination
Microbiological Contaminants							
Total Coliform Bacteria	N	1	N/A	0	Presence of coliform bacteria in 5% of monthly samples	2023	Naturally present in the environment
Fecal Coliform and E.coli	N	N/D	N/A	0	If a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or E. coli positive	2023	Human and animal fecal waste
Turbidity for Ground Water	N	.14	NTU	N/A	.3	2022	Soil runoff
Inorganic Contaminants							
Arsenic	N	0-2.1	ppb	0	10	2019 2020 2021 2022 2023	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes

Barium	N	.01-.134	ppm	2	2	2019 2020 2021 2022 2023	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Carbon, Total Organic (TOC)	N	0-3.53	ppm	NA	TT	2021 2023	Naturally present in the environment
Copper a) 90% results b) # of sites that exceed the AL	N	a) .232-.291 b) 1	ppm	1.3	AL=1.3	2021 2022	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Cyanide	N	0-6	ppb	200	200	2019 2020 2021 2022 2023	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	N	0-.822	ppm	4	4	2019 2020 2021 2022 2023	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories

Lead a) 90% results b) # of sites that exceed the AL	N	a) 2.9-5.8 b) 3	ppb	0	AL=15	2021 2022	Corrosion of household plumbing systems, erosion of natural deposits
Nickle	N	0-6	ppb	100	100	2019 2020 2021 2022 2023	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Nitrate (as Nitrogen)	N	0-4.178	ppm	10	10	2020 2022 2023	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	N	0-2.4	ppb	50	50	2019 2020 2021 2022 2023	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium	N	5.716-72.491	ppm	500	None set by EPA	2019 2020 2021 2022 2023	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills

Sulfate	N	0-291.492	ppm	1000	1000	2019 2020 2021 2022 2023	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills, runoff from cropland
TDS (Total Dissolved Solids)	N	0-928	ppm	2000	2000	2019 2020 2021 2022 2023	Erosion of natural deposits

Disinfection By-products

TTHM (Total Trihalomethanes)	N	.66-67.5	ppb	0	80	2023	By-product of drinking water disinfection
Haloacetic Acids	N	4.933-62.71	ppb	0	60	2023	By-product of drinking water disinfection
Chlorine	N	.01-1.25	ppm	4	4	2020	Water additive used to control microbes

Radioactive Contaminants

Alpha Emitters	N	-0.4-6	pCi/l	0	15	2019 2021 2022 2023	Erosion of natural deposits
Combined	N	0-0.66	pCi/l	0	5	2019 2021 2023	Erosion of natural deposits
Radium 226	N	1-0.16	pCi/l	0	5	2019 2021 2023	Erosion of natural deposits

Radium 228	N	-0.38-3.1	pCi/l	0	5	2019 2020 2021 2022 2023	Erosion of natural deposits
------------	---	-----------	-------	---	---	--------------------------------------	-----------------------------

Volatile Organic Contaminants

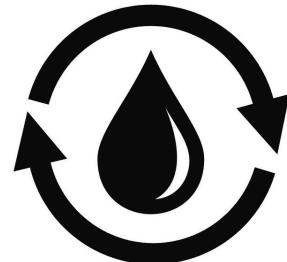
Ethylbenzene	N	0-22.2	ppb	700	700	2022 2023	Discharge from petroleum refineries
Xylenes	N	0-0.115	ppb	10	10	2022 2023	Discharge from petroleum factories; discharge from chemical factories

Inorganic Contaminants

Nitrates: As a precaution we always notify physicians and health care providers in this area if there is ever a higher than normal level of nitrates in the water supply.

Fluoride: Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease, including pain and tenderness of the bones. Children may get mottled teeth.

TCR Quality Violations


Non-Acute (Code 22)

- Water samples taken in August 2023, October 2023, November 2023, and December 2023 confirmed the presence of total coliform bacteria. Total coliforms are common in the environment and are generally not harmful themselves. The presence of these bacteria is usually a result of a problem with water treatment or the pipes which distribute the water and indicates that the water may have been contaminated with organisms that can cause disease. Symptoms may include diarrhea, cramps, nausea, and possible jaundice, and any associated headaches and fatigue. When the monthly samples confirmed the presence of total coliform bacteria, South Salt Lake took steps to identify and correct the problem. Subsequent monthly sampling has confirmed the absence of total coliforms in the water system.

Conservation Practices

Water conservation measures are an important first step in protecting our water supply. Such measures not only save the supply of our source water, but you can also save money by reducing your water bill. Here are a few suggestions:

- Take shorter showers
- Use water-saving nozzles
- Wash full loads of laundry
- Run dishwasher only when full
- Repair leaks in faucets and hoses
- Do not use toilet for trash disposal
- Use mulch around plants and shrubs
- Water lawn/garden in early morning or evening
- Shutoff sprinklers manually or use a rainfall shutoff device
- Use water from a bucket to wash cars and save hose for rinsing

Landscape Incentives

about half of Utah's municipal water is used for landscapes? That's a lot of water! Utah Water Savers is helping property owners become more water efficient with landscape incentive programs. Get paid to replace your grass with water-efficient landscaping. Earn a cash incentive when you upgrade your thirsty lawn to water-wise plants, trees, and shrubs. Learn more about landscape incentives and low-flow toilet rebates at UtahWaterSavers.com

Rain Barrel Program

South Salt Lake offers residents the opportunity to buy low-cost rain barrels to collect rainwater for use in landscapes. Save on your water bill, help conserve ground water, reduce water pollution by decreasing stormwater runoff, and collect clean water for your potted plants and landscapes. Purchase rain barrels at SSLC.gov.

Contact Us

If you have any questions about this report or concerning your water utility, please contact Misty Woods at (801) 483-6045 or email water@sslc.gov.

We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. South Salt Lake City Council meetings are held on the 2nd and 4th Wednesday of every month at 7:00 PM in the Council Chambers.

South Salt Lake Public Works

195 W. Oakland Avenue
South Salt Lake, UT 84115

Office Hours
Monday - Friday
7:30 AM - 4:00 PM

Utility Billing

220 E. Morris Avenue, #200
South Salt Lake, UT 84115

(801) 483-6074
utility@sslc.gov

